=

W

Product for Software Engineers

Sample chapter

This is a sample chapter from the book Product for Software Engineers which is
available for purchase at productforsoftwareengineers.com.

This chapter is in part two of the book where the spotlight is on how we move
quickly to facilitate a strong customer feedback loop of shipping and validating.
An important aspect of doing so is to avoid patterns in application development
that cause us to backtrack or stumble forward. Facts presents two patterns to
avoid and recommends alternatives.


https://productforsoftwareengineers.com

Facts

Especially in the early stages of any product or feature, we have to expect very
core things to change frequently.

In some sense we have to accept that making changes to code is easier than
changing data modeling. Authoring more lines of code will be cheaper than
orchestrating a data migration more often than not. I've not seen data migration
tools as seamless or less risky to employ than merging a pull request to pepper
over the shortcomings of a data model.

With the product evolving quickly and data modeling being harder and harder
to improve and keep pace with the code, there is one trick that will help you
model your data in a more foolproof and robust way that will endure iterations.

The trick: record facts. Immutable point-in-time records of what happened. You
might be thinking “events” but I'm not referring to event sourcing patterns. I
am recommending;:

o Prefer smaller records (rows, documents) over large records.

e Prefer immutable records as opposed to mutable documents that get
tattered with additional fields over time.

e Prefer simplicity in how a table / collection maps to the real world. For
example, “emails” over “communication events.” There will be time in
the future to build materialized views over various collections if it proves
necessary.

Designing systems which map to their domain as best as possible as opposed to
fanciful abstractions will save you a lot of misjudgment and rewriting. Systems
which encapsulate their domains accurately are more stable and thus easier to
compose into more tumultuous systems nearest to the user.

As areas of a product mature and slow down, there will be time to consider how
to reduce or coalesce reads and writes to best suit the access patterns you've
found necessary.

It can be tempting, especially with a lot of experience in building the optimized
versions of an existing product, to assume you know the right data modeling
from the start. I've rarely seen that be the case.

If you’d gone down the path of mutable records, you couldn’t as easily grok the
activities domain objects experience and even worse you could be missing data
that was clobbered by mutation. With facts we can reconstruct usage in much
more useful ways to inform optimizations.

Early read/write optimizations tend to not be necessary because the odds that
the particular system will benefit from being ready for the scale you're envisioning
are slim. If those optimizations do turn out to be necessary, that later stage
will be the better time to develop them. There will be more information about
real-world usage to inform decisions.



If you guess wrong on early optimizations, you will need to churn and toil through
many data migrations.

Keep things simple and stick to the facts. They can take a product’s data model
pretty far.

State machines

When I was interviewing at Stripe, I recall one of my interviewers proudly touting
the fact that Stripe modeled many things using state machines. It was the only
time in my 5 hours of interviews I thought, “geez maybe this place isn’t for me.”

State machines can model a lot of processes, however they aren’t flexible in the
same way facts are. In an academic sense state machines are cool, but in the
field they carry a heavy burden.

Most state machine implementations lean on the idea that an object or resource
can only exist in one state at a time. For each of these objects we would keep
track of what state it is in, often with a status field. For example, an invoice
could have a status of pending, paid, refunded, or cancelled over its lifetime.
In choosing these allowed states we take a snapshot of our understanding of the
world.

We get new requirements: invoices have multiple line items, and we need to allow
refunding only some of them. Ugh, what do we do? We could keep the status
as paid but then someone wouldn’t notice the partial refunds. If we marked it
refunded someone would assume the entire invoice was refunded. I guess we
need a new state partially_refunded? Then we’d have to update a bunch of
switch statements. ..

These requirements keep coming and coming, and because we’ve locked ourselves
into a state machine, we need to keep making judgement calls about how to
balance all the complexity and fit it into a single status representation.

The other knock against state machines is how the transitions between states
are performed. While updating the status field may be quick in itself, juggling
all the work that needs to be done before and after that state change can be
difficult to manage. Especially when we need to account for the state we're
transitioning from, not just the one we’re moving to.

Most real world systems struggle with transitions. There’s a lot of asynchronous
work, network calls, and side-effects that need to participate in what otherwise
should seem like an atomic operation to the observer of the object’s status. The
“solution” to this problem is locking, mutexes, and distributed leases over each
of these objects as they transition.

In a distributed system where we reach for locks (really they are time-based
leases to avoid deadlocks when computers die), we need a background correction
job to go around poking things to make sure that they have actually transitioned.



Now we’re scanning and scanning for objects, loading them up, reconstituting
where they ought to be, and transitioning them.

The locks were already slowing simple operations to a crawl, now the correcting
background job is falling behind. It needs parallelization to keep up and not lag
so far behind, and it always needs to be running. When it does lag behind too
much, we may need to advance each object through many states to get it caught
up. If there are cyclic state transitions this all can look weird to an observer
(e.g. receiving published events or web hooks) as they could receive events out of
order or miss instantaneous transitions. Whoops, the correction job failed after
a bunch of retries so now we’ve unlocked a new state: stuck.

This is how state machines spiral out of control in non-toy examples. It seems so
simple in the beginning to model things that way, but once we got into building
with I/O involved we had to live in eventual consistency and be beholden to our
initial wrong choices about that status field. We had to reach for locks and
other sophisticated tools that have a high mental overhead and take constant
babysitting.

Storing facts has none of these problems. We can just keep adding new informa-
tion as we go, not dancing around this status knot in all of our code.

This isn’t to say a status isn’t a handy user-facing construct. But in our
implementation we don’t want it to be the driver. Since we have all the facts
recorded, we can still compute a handy status on the fly to show if we want.

As for Stripe, over the years the use of state machines has fortunately died out
in new features and systems. The accreting, fact-based systems eventually won
out as more and more engineers got burned by the high operational toil of state
machines.

I’d already learned my lesson about state machines from web development, where
managing state and side-effects is practically the whole job. Back-end state
machines, as opposed to those short-lived frontend state machines, are even
worse because of the persistent nature of the databases and data migrations
involved to evolve the system. I guess we can call state machines a full-stack
bad ideal!

Don’t use state machines, stick to the facts.



	Product for Software Engineers
	Sample chapter

	Facts
	State machines


